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Abstract. The problem of heat transfer and temperature distribution in a binary mixture of rarefied gases 
between two parallel plates with different temperatures is investigated on the basis of kinetic theory. Under 
the assumption that the gas molecules are hard spheres and undergo diffuse reflection on the plates, the 
Boltzmann equation is analyzed numerically by means of an accurate finite-difference method, in which 
the complicated nonlinear collision integrals are computed efficiently by the deterministic numerical kernel 
method. As a result, the overall quantities (the heat flow in the mixture, etc.) as well as the profiles of 
the macroscopic quantities (the molecular number densities of the individual components, the temperature 
of the total mixture, etc.) are obtained accurately for a wide range of the Knudsen number. At the same 
time, the behavior of the velocity distribution function is clarified with high accuracy. 

INTRODUCTION 

The problem of heat transfer and temperature distribution in a rarefied gas between two parallel plates with 
different temperatures is one of the classical problems in rarefied gas dynamics, and a large number of theoretical 
and experimental works have been devoted to this problem, especially in the case of single-component gases 
(see, e.g., [1-4] and the references cited in [3,4]). Early theoretical works covering a wide range of the Knudsen 
number were mainly based upon either moment and variational methods, containing arbitrary assumptions on 
the form of the velocity distribution function, or numerical analysis using model Boltzmann equations. Only 
in 1989, Ohwada et al. [3] reported an accurate numerical solution of the linearized Boltzmann equation for 
a hard-sphere gas in the case of a small temperature difference between the plates. Their solution method 
was a finite-difference method, in which the collision integral was computed efficiently as well as accurately by 
the numerical kernel method developed by Sone et al. [5]. Subsequently, Ohwada extended the method to the 
collision integral of the full Boltzmann equation in his shock-structure analysis [6] and then applied it to the 
heat-transfer problem for a nonsmall temperature difference between the plates [4,7]. 

As for the case of binary gas mixtures, the accumulation of the results is not satisfactory, though some 
analyses (by means of a moment method) as well as experiments were performed in 1970's [8,9]. In the present 
study, therefore, we investigate the heat-transfer problem for a binary mixture of hard-sphere gases on the basis 
of the full Boltzmann equation for a large temperature difference, aiming to provide an accurate numerical 
solution that can be regarded as a standard for the problem. Recently, the present authors have extended 
Ohwada's numerical kernel method for the nonlinear collision integral to the case of binary mixtures in their 
study of shock wave structure [10]. The same method is employed in the present analysis. 

PROBLEM 

Consider a rarefied mixture of two gases, say components A and B, in the domain 0 < X\ < D between two 
parallel plane walls at rest, where Xi is a rectangular coordinate system in space. Let the wall at X\ = 0 be 
kept at temperature Tj and that at X\ = D at temperature Tu. Investigate the steady behavior of the mixture 
(temperature distribution, heat flow, etc.) on the basis of kinetic theory under the following assumptions: 
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(i) The molecules of each component are hard spheres, and the interaction between two gaseous molecules is 
the complete elastic collision. 
(ii) The molecules of each component are reflected according to the diffuse reflection condition on the walls. 

BASIC EQUATION 

Let £ = (£1, £2, £3) be the molecular velocity and Fa(X\, £) the velocity distribution function of the molecules 
of a-component (a = A, B). The Boltzmann equation in the present problem is written as 

^%T=   H   Jßa(Fß,Fa), (a = A,B), (1) 
1        ß=A,B 

Jßa(f,g) = l(dß
m
a)2/2] J[f{ga)g{tßa) - /(O$(0]|e • v\dndt„ (2) 

£ßa = £+^(e-V)e,    ^=^_^(e.V)e,     V = £, - £, (3) 

d^ = (<C + dß
m)/2,        //" = 2mamß/(ma + mß). (4) 

Here, ma and d^ are the mass and diameter of a molecule of a-component; £„ is the integration variable for £, 
e is a unit vector, d£* = d£*irf£*2rf£*3, and dfl is the solid-angle element around e; the domain of integration 
is the whole space of £„ and all directions of e. 

The boundary condition on the walls (X± = 0 and D) is expressed as follows: For £ • n > 0, 

^•e=-s(^r-p(-^). <=-(^ax</-"f°(x^K" <5) 

where 

Tw =TI:    n = (1,0,0),    at Xx = 0,    and       Tw = TH,    n = (-1,0,0),    at Xx = D, (6) 

and k is the Boltzmann constant. 
If we rewrite the equation and boundary condition in a dimensionless form, we find that the problem is 

characterized by the following five parameters: mB/mA, d^/d^, TJJ/TJ, nB
v/n^v, and Kn. Here, n"v is the 

average molecular number density of a-component in the domain 0 < X\ < D, and Kn= IQ/D is the Knudsen 
number, where la = [-\/27r(d^)27i0„]_1 is the mean free path of the molecules of A-component when it is in the 
equilibrium state at rest with number density nav = nA

v + n^v. 

NUMERICAL ANALYSIS 

We first note that in the present problem we can seek the solution in the form Fa (X\, £1, rj), where 77 = 
(£2 + £3)     • We analyze Eqs. (l)-(6) numerically by means of an iterative finite-difference method. The key 

TABLE 1.   Heat flow qt  =  (qi,   0,   0) of the total mixture for TH/Ti  =  2.    Here, 
po = kriavTi is the reference pressure. 

Kn 
mB/mA = 0.5, dB ldA = 1 mB/mA = 0.25, dB ldA = 0.5 

nB lnA 
"'av 1 "av qi/\po(2kTi/m A-jl/2] A (%) qi/[po(2kTi/m A)l/2] A (%) 

0.1 0.1 -0.184 0.45 -0.207 0.72 
0.1 1 -0.509 0.19 -0.547 0.19 
0.1 10 -0.656 0.049 -0.693 0.047 

1 0.1 -0.209 0.34 -0.370 0.67 
1 1 -0.589 0.15 -0.814 0.13 
1 10 -0.763 0.047 -0.966 0.036 

10 0.1 -0.245 0.34 -0.659 0.19 
10 1 -0.677 0.10 -1.124 0.075 
10 10 -0.871 0.038 -1.244 0.014 
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issue in the analysis is an accurate and efficient computation of the complicated collision integral J$a using 
the discrete values F°jt of Fa at the grid points (X[ , £" ',rf"W) in the {X\,£,\,rj) space. For this purpose, 

we expand Fa at X\ = X}    as 

Fa(xM,S1,r,) = eXpl      W > Y^a^muarn   €?=€i(^ ff rlkTi 
mu (7) 

where ^"(Cf) is a localized basis function that is sectionally quadratic, takes unity at £f = £^ J' (2fcT//ma)_1,/2, 

and is nonzero only in its neighborhood; Li(y) is the Laguerre polynomial in y of order I. The coefficients a^ 

are determined in such a way that Eq. (7) coincides with F?-l at the grid point (£" ,r)a(1'). If we substitute 
Eq. (7) into the collision integral jßa(F@, Fa), it is expressed as a linear combination of the collision integrals 
for the functions of the form (fja)2m"&™. The latter collision integrals are independent of F°jt and therefore can 
be computed beforehand (numerical collision kernel). Once the numerical kernel is prepared, the computation 
of the collision integral in each iteration step is reduced to simple products and sums of matrices. In this way, 
high efficiency in the computation of the collision integral is attained (see [6,10] for the details). 

RESULT OF ANALYSIS 

The computation was carried out for TJJ/TJ = 2, (mB/mA, d^/d^) = (0.25,0.5) and (0.5,1), nB
v/nA

v = 0.1, 
1, and 10, and Kn= 0.1, 1, and 10. To show the result, we denote by na the molecular number density 
of a-component (a = A,B) and by T and qi = (<?i,0,0) the temperature and the heat flow of the total 
mixture, respectively [i.e., na=f Fad£, (3knT, 2qi)=J(l, £i)\£\2(mAFA + mBFB)d£, where n = nA + nB 

and d^=d^\d^2d^3]. Note that the flow velocity of each component vanishes identically and the heat flow q\ is 
independent of X\ in the present problem because of the conservation of mass and that of energy. 

The values of q\ in all the cases are shown in Table 1, where po = knavTi is a reference pressure. The 
numerical result of q\ varies slightly with X\ because of numerical error. Its average, say q\av, over 0 < 
X\ < D is shown as q\ in the table. The maximum variation of q\ over 0 < X\ < D relative to q\av'- 
A = max | qi — q\av \ j \ q\av |, which gives a good measure of accuracy of the computation, is shown in percentage 
in Table 1. Figure 1-3 show the profiles of the number densities nA and nB and of the temperature T for 
the case of mB/mA = 0.25, d^/d^ = 0.5: Fig. 1 is for nB

v/nA
v = 0.1, Fig. 2 for nB

v/nA
v = 1, and Fig. 3 for 

nav/nav = 10- The smaller molecules (the molecules of .B-component) have a larger mean free path. Since Kn 
is based on the average number density of the total mixture and on the diameter of the larger molecules (the 
molecules of A-component), the effective Knudsen number at the same Kn is larger for larger values of nB

v/nA
v. 

Therefore, the temperature jump on the walls at the same Kn is larger for larger nB
v/nA

v. In Figs. 1-3, the 

1.4 

1.2 - 

0.8 

-  Kn = 0.1 - 

\/      1 
.      }--nA/n±   \ 

---;--}: nB/n?„   \ 
»,/            /f» 

"D-7   1        "v 

- 

i   10 

1            ....            1            ...            . 

0.5 
Xt/D 

T_ 

1.5 

Kn = 

1   ' 

= 0.1 
- 

s/^Cr-*^ 

i   ■ 

1 

10     - 

0.5 
Xi/D 

FIGURE 1.   Profiles of the number densities n     and n     and of the temperature of the total mixture T for 
mB/mA = 0.25, d%,/dA   = 0.5, and riaV/nA

v = 0.1. 
method, and • and o that by the DSMC method. 

Here, — and — indicate the result by the finite-difference 
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corresponding result obtained by the direct simulation Monte Carlo (DSMC) method [11] is also shown for 
comparison. The DSMC result shows good agreement with the finite-difference result. 

The velocity distribution functions Fa at two points near the walls in the cases corresponding to Figs. 1-3 
are shown in Figs. 4-6, respectively. That is, Fa at r](2kTj/mA)~1'2 = 0.15 and 1.35 are shown as functions of 
£i. In the case of free-molecular gas (Kn = oo), the velocity distribution functions for any X\ are discontinuous 
at £i = 0. For large Kn (Kn = 10), though the discontinuity vanishes because of the molecular collision, the 
gradient near £i = 0 is still very steep. The change around £i = 0 becomes milder as the Knudsen number 
decreases. The corresponding result by the DSMC method is also shown in Figs. 4-6. 

The data about grid systems are summarized here. Let us put cf = (2kTjjmA)1'2. We divided the interval 
0 < X\ < D into 100 uniform sections for Kn= 1 and 10 and into 100 nonuniform sections (minimum size 
4 x 10-6.D at X\ = 0 and D; maximum size 0.02941? at X\ = D/2) for Kn= 0.1. We used uniform grids for 
£i: For Kn= 0.1 and 1, the grid size is 0.15c^ and the range is restricted to — 6cf < £i < 6cA (mB/mA = 0.5) 
or -8.7cf < £i < 8.7cf (mB/mA = 0.25) for A-component and to -8.4cf < £i < 8.4cf (mB jmA = 0.5) or 

-12cA < £i < 12c^ (mB/mA = 0.25) for B-component; for Kn= 10, the grid size is 0.106c^ and the range 
is restricted to —5.73cj   < £i < AAbcf (m  jr 0.5) or -7Mcf < & < 6.58cf (mBjr 0.25) for 
A-component and to -7Mcf < £i < 6.58c^ (mB jmA = 0.5) or -10.82cj < £i < 9-55cj (mB jmA = 0.25) for 

B-component. For r/, we used nonuniform 14 grid points defined by (2kTi/ma)1'2^/yk (a = A, B) for Kn= 0.1 

and 1 and (2kTj/ma)1'2^yk/2 for Kn= 10, where yk (k = 1, ..., 14) are the zeros of the Laguerre polynomial 
L14(y) (see [10]). 
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FIGURE 2.   Profiles of the number densities n     and n     and of the temperature of the total mixture  T for 
m   jm    = 0.25, dm/dm = 0.5, and nav/nav = 1. See the caption of Fig. 1. 
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FIGURE 7. DSMC computations with two different numbers of simulation particles for mB jm = 0.25, d^l/dm = 0.5, 
Kn = 0.1, and nav/nav = 10. (a) Number density n and temperature T (cf. Fig. 3). (b) Velocity distribution 
function FA at Xi/D = 0.905 (cf.   Fig. 6).   Here, — indicates the finite-difference result, o the DSMC result with 
(NA, N") = (25, 250), and • that with (NA, N") = (100, 1000). 

Finally, we give information about the DSMC computational system. We used 50 (Kn = 10) or 100 (Kn = 0.1, 
1) uniform cells in the interval 0 < X\ < D. Let Na be the average number of simulation particles per cell for 
a-component. Then, (NA, iVB)=(1000, 100) for nB

v/nA
v = 0.1, (250, 250) for nB

v/nA
v = 1, and (100, 1000) 

for nB
v/nA

v = 10 [(NA, NB)=(2000, 200) for nB
v/nA

v = 0.1 and (200, 2000) for nB
v/nA

v = 10 in the case of 
mB jmA = 0.25, d^/d^ = 0.5, and Kn = 10]. The average of 2 x 104 samples taken at each 50 time steps 
is shown in Figs. 1-6. For small or large nB

v/nA
v, the total number of simulation particles increases because 

sufficient particles are necessary for the component with smaller number density (the same weight is used 
for both components in the present computation). We also carried out the DSMC computation with fewer 
particles, an example of which is shown in Fig. 7. That is, the result with (NA, NB)=(25, 250) of the case 
mB/mA = 0.25, d^/d^ = 0.5, Kn = 0.1, and nB

v/nA
v = 10 is shown in the figure, together with the result 

with (NA, NB)=(100, 1000). Although it is smooth, the profile of nA with (NA, NB)=(25, 250) deviates 
recognizably from that by the finite-difference method [Fig. 7(a)]. 
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